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Abstract— Unlike convectional omni-directional sensors that
always have an omni-angle of sensing range, directional sensors
may have a limited angle of sensing range due to technical
constraints or cost considerations. A directional sensor network
consists of a number of directional sensors, which can switch to
several directions to extend their sensing ability to cover all the
targets in a given area. Power conservation is still an important
issue in such directional sensor networks. In this paper, we
address the multiple directional cover sets problem (MDCS) of
organizing the directions of sensors into a group of non-disjoint
cover sets to extend the network lifetime. One cover set, in which
the directions cover all the targets, is activated at one time. We
prove the MDCS to be NP-complete and propose three heuristic
algorithms for the MDCS. Simulation results are also presented
to demonstrate the performance of these algorithms.

I. INTRODUCTION

In recent years, sensor networks have emerged as promis-
ing platforms for many applications, such as environmental
monitoring, battlefield surveillance, and health care [1], [2].
A sensor network may consist of a large number of small
sensor nodes that are composed of sensing, data processing
and communicating components. The conventional research
of sensor networks are always based on the assumption of
omni-directional sensors that have an omni-angle of sensing
range. However, sensors may have a limited angle of sensing
range due to technical constraints or cost considerations,
which are denoted as directional sensors in this paper. Video
sensors [3], [4], ultrasonic sensors [5] and infrared sensors [2]
are examples of widely used directional sensors. Note that the
directional characteristic we discuss in this paper is from the
point of view of the sensing, but not from the communicating
activity of sensor nodes.

There are several ways to extend the sensing ability of
directional sensors. One way is to put several directional
sensors of the same kind on one sensor node, each of which
faces to a different direction. One example using this way is
in [5], where four pairs of ultrasonic sensors are equipped on
a single node to detect ultrasonic signals from any direction.
Another way is to equip the sensor node with a mobile device
that enables the node to move around. The third way is to equip
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Fig. 1. Simple directional sensor networks

the sensor node with a device that enables the sensor on the
node to switch (or rotate) to different directions. We adopt the
third way so that a sensor can face to several directions. In
this paper, we assume that each sensor node equips exactly
one sensor on it. Therefore, we do not differentiate the terms
sensor and node in the rest of the paper.

We also consider the following scenario. Some targets with
known locations are deployed in a two-dimensional Euclidean
plane. A number of directional sensors are randomly scattered
close to these targets. We assume the sensing region of each
direction of a directional sensor is a sector of the sensing disk
centered at the sensor with a sensing radius. Each sensor has
a uniform sensing region and the sensing regions of different
directions of a sensor do not overlap. However, the algorithms
proposed in this paper do not put restrictions on the shape
of the sensing region or overlaps between different directions.
When the sensors are randomly deployed, each sensor initially
faces to one of its directions. These sensors form a directional
sensor network so that data can be gathered and transferred to
the sink, a central processing base station.

If a directional sensor faces to a direction, we say that the
sensor works in this direction and the direction is the work
direction of the sensor. When this sensor works in a direction
and a target is in the sensing region of the sensor, we say
that the direction of the sensor covers the target. Because a
directional sensor has a smaller angle of sensing range than an
omni-directional sensor or even does not cover any target when
it is deployed, we need to schedule sensors in the network to
face to certain directions to cover all the targets. We call a
subset of directions of the sensors, in which the directions
cover all the targets, as a cover set. Note that no more than
one direction of a sensor can be in a cover set. The problem
of finding a cover set, called directional cover set problem
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(DCS), is proved to be NP-complete in this paper.
Fig. 1(a) shows a simple directional sensor network. The

black point s1 is a directional sensor that can switch to three
directions d1,1, d1,2 and d1,3. Direction d1,1 is the direction to
which the sensor faces when it is deployed, and the shadowed
sector above d1,1 is the sensing region of s1 when it works
in d1,1. The stars a1, a2 and a3 are three targets. Although
the direction d1,1 does not cover any target, s1 can switch to
d1,3 to cover both a1 and a2. The directions d1,3 of s1 and
d3,1 of the sensor s3 together cover all the targets in Fig. 1(a).
Therefore, {d1,3, d3,1} is a cover set for the three targets.

Power conservation is still an important issue in directional
sensor networks due to the following reasons. First, most
sensors have limited power sources and are non-rechargeable.
Also, the batteries of the sensors are hard to replace due to
hostile or inaccessible environments in many scenarios. We
assume that each sensor is non-rechargeable and dies when it
runs out its power. To conserve energy, we can leave necessary
sensors in the active state and put redundant sensors into the
sleep state, while keeping all the targets covered.

In this paper, our objective is to maximize the network
lifetime of a directional sensor network, where the network
lifetime is defined as the time duration when each target is
covered by the work direction of at least one active sensor.
Our approach is to organize the directions of sensors into non-
disjoint subsets, each of which is a cover set, and allocate the
work time for each cover set. Note that non-disjoint cover
sets allow a direction or a sensor to participate in multiple
cover sets. We alternately activate only one cover set at any
time. When one cover set is activated, each sensor that has
a direction in this cover set is in the active state and works
in this direction, while all the other sensors are in the sleep
state. We call the problem of finding non-disjoint cover sets
and allocating the work time for each of them to maximize
the network lifetime as multiple directional cover sets problem
(MDCS).

The main contributions of this paper are as follows: We
formally define the DCS and the MDCS. We prove that both
problems are NP-complete. We present a heuristic algorithm
named Progressive for the MDCS. Then an enhanced algo-
rithm named Prog-Resd is proposed to gain a longer network
lifetime. We also propose an algorithm named Feedback that
uses the results obtained in previous iterations as a feedback to
the next iteration. This algorithm aims to get a longer network
lifetime and fewer cover sets which are more efficient and
practical.

The remainder of the paper is organized as follows: Sec-
tion II briefly surveys the related works in the literature. In
Section III, the DCS and the MDCS are formally defined and
proved to be NP-complete. In Section IV, we formulate the
MDCS as an optimization problem. In Section V, the Progres-
sive and Prog-Resd algorithms are presented. In Section VI,
the Feedback algorithm is described. Simulation results are
presented to show the effectiveness of the proposed algorithms
in Section VII. We conclude the paper and outline directions
of future work in Section VIII.

II. RELATED WORK

A number of scheduling algorithms have been proposed
to prolong the network lifetime for omni-directional sensor
networks. Sleeping protocols, such as PEAS [6], PECAS [7],
ACOS[8] and OGDC [9], have used different strategies to
extend the network lifetime, while trying to achieve the largest
area coverage, which represents how well a region of interest
is monitored. Scheduling problems are studied in [10], [11],
[12] when a set of targets are deployed in a region. [11]
assumes that a sensor can watch only one target at a time, and
builds a target watching timetable for each sensor to maximize
the network lifetime. [12] organizes sensors into mutually
exclusive subsets that are activated successively, where the size
of each subset is restricted and not all of the targets need to
be covered by the sensors in one subset. Unlike [11] and [12],
[10] aims to extend the lifetime of an omni-directional sensor
network by organizing the sensors into non-disjoint subsets,
where each target must be covered by at least one sensor in
each subset. This problem is proved to be NP-complete in [10],
although finding a subset of omni-directional sensors to cover
all the targets can be done in a polynomial time. Note that
the problem discussed in [10] is a special case of the MDCS
where a sensor has only one direction.

Recently, some efforts have been devoted to the research
of directional sensor networks. [13] provides a directional
sensor model where each sensor is fixed to one direction
and analyzes the probability of full area coverage. In [14], a
similar directional sensor model is proposed, where a sensor is
allowed to work in several directions. The objective of [14] is
to find a minimal set of directions that can cover the maximal
number of targets. It is different from the one in this paper
that aims to find a group of non-disjoint cover sets in each of
which the directions cover all the targets so as to maximize
the network lifetime.

III. MULTIPLE DIRECTIONAL COVER SETS PROBLEM

In this section, we first define the notations. Then we give
some simple examples of the MDCS to briefly describe this
problem. We also formally define the DCS and the MDCS and
prove that both problems are NP-complete.

A. Notations and Assumptions

We adopt the following notations throughout the paper.

• M : the number of targets.
• N : the number of sensors.
• W : the number of directions per sensor.
• am: the mth target, 1 ≤ m ≤ M .
• si: the ith sensor, 1 ≤ i ≤ N .
• di,j : the jth direction of the ith sensor, 1 ≤ i ≤ N ,

1 ≤ j ≤ W . We define di,j = {am| am is covered by
di,j ,∀am ∈ A} and si = {di,j | j = 1 . . . W}. Hence, if
am ∈ di,j , am is covered by di,j .

• A: the set of targets. A = {a1, a2, . . . , aM}.
• S: the set of sensors. S = {s1, s2, . . . , sN}.
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• D: the set of the directions of all the sensors. D =
{di,j | i = 1 . . . N, j = 1 . . . W}. Notice that

⋃N
i=1 si is a

non-overlapped partition of D.
• Li: the lifetime of a sensor si, which is the time duration

when the sensor is in the active state all the time.

In this paper, we assume that a directional sensor with W
directions has a lifetime W times of that of the same omni-
directional sensor. For simplicity, we assume each sensor
initially has an equal lifetime. Moreover, we assume that the
energy consumed for switching a sensor from one direction to
another can be omitted.

B. Simple Examples of MDCS

To briefly describe the MDCS, simple examples are illus-
trated here. Fig. 1 shows two directional sensor networks, both
of which have three sensors s1, s2 and s3 deployed to monitor
three targets a1, a2 and a3. Each sensor has an initial lifetime
of 1 (time unit). Sensor s1 has three directions d1,1, d1,2 and
d1,3, s2 has d2,1, d2,2 and d2,3, and s3 has d3,1, d3,2 and d3,3.

For the network deployment in Fig. 1(a), we can get the
following cover sets: D1 = {d1,3, d3,1} with 0.5, D2 =
{d1,3, d2,2} with 0.5, and D3 = {d2,2, d3,1} with 0.5. This
results in a network lifetime of 1.5. On the other hand,
if a sensor is not allowed to participate in multiple cover
sets, for the network deployment in Fig. 1(a), we can get
D1 = {d1,3, d3,1} with its work time 1, which is the maximal
network lifetime.

For the network deployment in Fig. 1(b), we can get a cover
set D1 = {d1,3, d2,2} with its available work time 1. This
results in a network lifetime of 1.

C. Problem Definition

To prove the NP-completeness of the MDCS, we formally
provide the following definitions:

Definition 1. Cover Set: Given a collection D of subsets of
a finite set A and a partition S of D, a cover set for A is a
subset D

′ ⊆ D such that every element in A belongs to at
least one member of D

′
and every two elements in D

′
cannot

belong to the same member of S.

Definition 2. Directional Cover Set Problem (DCS): Given a
collection D of subsets of a finite set A and a partition S of
D, find a cover set for A.

Definition 3. Multiple Directional Cover Sets Problem
(MDCS): Given a collection D of subsets of a finite set
A and a partition S of D, find a family of K cover sets
D1,D2, . . . , DK ⊆ D for A, with nonnegative weights
t1, t2, . . . , tK , such that t1 + t2 + . . . + tK is maximized, and
for each s ∈ S,

∑K
i=1 |s ∩ Di| · ti ≤ L, where L is a given

positive number.

Note that |s∩Di| indicates the number of the directions of
s that are in Di, where |s ∩ Di| = 0 or 1 since no more than
one direction of a sensor can work in a cover set.

D. NP-completeness

In this subsection, we first prove the DCS to be NP-
complete by reduction from the 3-Conjunctive Normal Form-
Satisfiability (3-CNF-SAT) problem [15]. Then we prove the
MDCS to be NP-complete by reduction from the DCS.

The decision versions of both the DCS and the MDCS are
defined as follows:

Definition 4. Decision Version of the DCS: Given a collection
D of subsets of a finite set A and a partition S of D, determine
if there exists a cover set for A.

Definition 5. Decision Version of the MDCS: Given a col-
lection D of subsets of a finite set A and a partition S
of D, determine if there exists a family of K cover sets
D1,D2, . . . , DK ⊆ D for A, with nonnegative weights
t1, t2, . . . , tK , such that t1 + t2 + . . . + tK ≥ p, and for each
s ∈ S,

∑K
i=1 |s ∩ Di| · ti ≤ L, where L is a given positive

number.

The following theorems show that both the DCS and the
MDCS are NP-complete.

Theorem 1. The DCS is NP-complete.

Proof : We first show that the DCS ∈ NP. Suppose that a
set D

′
is given as a certificate. The verification algorithm first

affirms D
′ ⊆ D, and then it checks that if each element in A

belongs to at least one member of D
′
. At last, it checks that if

each member of S contains no more than one element in D
′
.

The verification can be done in a polynomial time. Therefore,
the DCS ∈ NP.

To prove that the decision version of the DCS is NP-hard,
we show a polynomial time reduction from the 3-CNF-SAT
problem to the DCS.

For the 3-CNF-SAT problem, a boolean formula F consist-
ing of m clauses and n variables is in 3-conjunctive normal
form, i.e., F = c1∧c2∧. . .∧cm, where each clause cj = xj,1∨
xj,2 ∨ xj,3 and each literal xj,k ∈ {x1, x1, . . . , xn, xn}. From
the given formula F , an instance of the DCS is constructed
as follows:

1) A = {cj | j = 1 . . . m}.
2) For each xi, define a set

di,1 = {cj | cj contains xi, 1 ≤ j ≤ m}.
3) For each xi, define a set

di,2 = {cj | cj contains xi, 1 ≤ j ≤ m}.
4) D = {di,1| i = 1 . . . n} ∪ {di,2| i = 1 . . . n}.
5) si = {di,1, di,2}, S = {si| i = 1 . . . n}.

This reduction can be finished in a polynomial time.
We now show that the formula F is satisfiable iff the

instance of the DCS has a cover set. If the formula is
satisfiable, for every clause cj , at least one of its literals is
true. Picking the true literals from each clause yields a subset
D

′
of D since each literal in the 3-CNF-SAT corresponds to

an element in D. Each cj ∈ A belongs to at least one member
of D

′
, which corresponds to one of its chosen literals. As xi

and xi cannot both be true, the corresponding di,1 and di,2 in
D cannot both be chosen into D

′
, i.e., every two elements in
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D
′

do not belong to the same s ∈ S. Therefore, D
′

is a cover
set for A.

Conversely, suppose that the instance of the DCS has a cover
set D

′
. Since each element in D

′
corresponds to a literal in the

3-CNF-SAT, we can assign true to these corresponding literals.
Any literal and its complement are not both true because
the corresponding elements in D

′
cannot belong to the same

s ∈ S. Every clause is true because it belongs to at least one
member of D

′
, i.e., at least one of its literals is true. Therefore,

the formula is satisfied.
Since the DCS is both NP and NP-hard, we conclude that

the DCS is NP-complete. �

Theorem 2. The MDCS is NP-complete.

Proof : We first show that the MDCS ∈ NP. Given a solution
D1,D2, . . . , DK with weight t1, t2, . . . , tK , and a number p,
the verification algorithm can verify whether D1,D2, . . . , DK

are cover sets in polynomial time as we have shown in the
proof of Theorem 1. Checking t1 + t2 + . . . + tK ≥ p and
all the members of s appear in D1,D2, . . . , DK with a total
weight of at most L for each s ∈ S can also be done in a
polynomial time. Therefore, the MDCS ∈ NP.

To prove that the decision version of the MDCS is NP-hard,
we give the MDCS a polynomial time reduction from the DCS,
which has been proved to be NP-complete in Theorem 1.

Given a DCS instance with a collection D1 of a finite set A1

and a collection S1 of subsets of D1, we construct an instance
of the MDCS by setting A = A1, D = D1, S = S1, K = 1,
L = 1 and p = 1. If the instance of the DCS has a cover set
D

′
, we get a solution D1 = D

′
with t1 = 1 for the instance

of the MDCS, and vice versa. This proves that the MDCS is
NP-hard. As the MDCS ∈ NP, the MDCS is NP-complete. �

From the proof of Theorem 2, we can see that the DCS is
a subclass of the MDCS where K, the number of cover sets,
is restricted to 1.

IV. OPTIMIZATION FORMULATION OF MDCS

In this section, we first model the MDCS as a Mixed Integer
Programming (MIP) problem [16]. Since the MDCS is NP-
complete, it is unlikely to solve the MIP problem of the
MDCS in polynomial time. Therefore, we relax the integrality
restrictions in the MIP problem to get a Linear Programming
(LP) problem which is used in the heuristic algorithms of the
following sections.

Consider a directional sensor network with a set A of M
targets, a set S of N sensors and a set D of directions. Each
sensor si ∈ S has W directions and an initial lifetime of Li.

We organize the directions in D into K cover sets. The kth

cover set is denoted as Dk, with the work time tk. A direction
di,j is allowed to participate into multiple cover sets. We set
a boolean variable xi,j,k as

xi,j,k =
{

1 , if di,j ∈ Dk,
0 , otherwise.

(1)

The MIP problem formulated for the MDCS is as follows:

max t1 + t2 + . . . + tK (2)

subject to∑K
k=1

∑W
j=1 xi,j,k · tk ≤ Li,∀si ∈ S (3)

∑W
j=1 xi,j,k ≤ 1,∀si ∈ S, k = 1 . . . K (4)

∑
am∈ di,j

di,j∈D

xi,j,k ≥ 1,∀am ∈ A, k = 1 . . . K (5)

where xi,j,k = {0, 1}, and tk ≥ 0 (6)

The objective function (2) maximizes the total work time
of all the K cover sets. The constraint (3) shows the lifetime
constraint for each sensor. The W directions of any sensor
work across all the cover sets for no more than the initial
lifetime of the sensor. The constraint (4) indicates the exclu-
sivity among different directions of a single sensor, i.e., no
more than one direction of the sensor can work in a cover set.
The constraint (5) represents the coverage guarantee for each
target. For each cover set, every target in A must be covered
by at least one direction of this cover set. The constraint (6)
shows the restrictions on the variables. The variable xi,j,k can
be either 1 or 0, i.e., the direction di,j works either in the kth

cover set or not.
As there exists xi,j,k · tk in constraint (3), the MIP problem

is not linear. Let ti,j,k = xi,j,k ·tk. The variable ti,j,k indicates
the work time of di,j in the cover set Dk. We get the following
Linear Mixed Integer Programming (LMIP) problem with the
objective function (2) and the following constraints:

∑K
k=1

∑W
j=1 ti,j,k ≤ Li,∀si ∈ S (7)

∑W
j=1 ti,j,k ≤ tk,∀si ∈ S, k = 1 . . . K (8)

∑
am∈ di,j

di,j∈D

ti,j,k ≥ tk,∀am ∈ A, k = 1 . . . K (9)

where ti,j,k = 0 or tk, and tk ≥ 0 (10)

Since the MDCS is NP-complete, it is unlikely to solve the
MIP or LMIP problem of the MDCS in polynomial time. We
relax “ti,j,k = 0 or tk” to “0 ≤ ti,j,k ≤ tk” in the constraint
(10) and obtain the variable constraint for the LP problem:

ti,j,k ≥ 0 (11)

We use the constraint (11) for the LP problem instead of the
constraint “0 ≤ ti,j,k ≤ tk” because the later can be deduced
by the two constraints (8) and (11) together. Finally, we get
the LP problem consisting of the objective function (2), the
constraints (7), (8), (9) and (11). In the following sections, we
describe several heuristic algorithms based on the LP problem.

V. PROGRESSIVE AND PROG-RESD ALGORITHMS

In this section, we present a heuristic algorithm named
Progressive based on the LP problem. Then, two important
processes in this algorithm, which are also used in the Feed-
back algorithm, are specifically described. At last, we propose
an enhanced algorithm named Prog-Resd.
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A. Progressive Algorithm

In [10], an algorithm based on LP is proposed to get the
maximal lifetime of an omni-directional sensor network. In
this paper, we modify this algorithm as a basic solution to
the MDCS. This algorithm is referred to as Progressive since
in each iteration it computes several cover sets and their
corresponding work time which is accumulated to the total
network lifetime. Each iteration in the Progressive algorithm
consists of the following steps.

First, we solve the LP problem and get the optimal solution
of tk, the work time of the kth set of directions, and ti,j,k, the
work time of the direction di,j in the kth set of directions, for
i = 1 . . . N , j = 1 . . . W and k = 1 . . . K. We denote the kth

set of work directions as Dk = {di,j | ti,j,k > 0,∀di,j ∈ D}.
Note that more than one direction of a sensor may be in

Dk, for k = 1 . . . K. For example, ti,j,k > 0 and ti,j′ ,k > 0
indicate that the directions di,j and di,j′ of the same sensor
si work at the same time, although ti,j,k and ti,j′ ,k may still
satisfy all the constraints of the LP problem. If more than one
direction of a sensor is in Dk, we say these directions conflict
with each other and are conflicting directions. Otherwise, if
only one direction of the sensor is in Dk, we say this direction
is a non-conflicting direction. We need to remove conflicting
directions in Dk to make it a cover set. We call this process
as the conflicting direction elimination process. If this process
succeeds, it returns the updated cover set Dk and the work
time ti,j,k of any di,j ∈ Dk; otherwise, Dk = ∅. This
process is unnecessary for omni-directional sensor networks
because no conflicting direction exists in omni-directional
sensor networks. For description convenience, we describe the
detail of this process separately in Section V-B.

If the conflicting direction elimination process returns a
cover set Dk, we also need to determine the work time for
Dk. Although the work time of the directions in Dk may be
variant, we determine an identical period of time such that
all the targets in A can be covered by the directions in Dk.
To save energy, only a subset of Dk can be selected. We call
this process as the direction selection process. This process
returns a cover set D∗

k ⊆ Dk and the work time t∗k of D∗
k. We

describe the detail of this process separately in Section V-C.
After the direction selection process, the work time t∗k of

the cover set D∗
k is accumulated to the total network lifetime.

Then the residual lifetime of any selected sensor si is updated,
i.e., Li = Li − t∗k, ∀di,j ∈ D∗

k. The constraint (7) in the LP
problem is also updated.

The iterations are repeated until the lifetime computed in the
current iteration is less than a small positive value of ε, which
is given depending on the accuracy requirement of specific
applications.

The Progressive algorithm is shown below:
Progressive Algorithm

1: lnet = 0 /* the lifetime of the network*/
2: repeat
3: Solve the LP problem and get each tk and ti,j,k
4: Dk = {di,j | ti,j,k > 0,∀di,j ∈ D}, for k = 1 . . . K

5: l
′
net = lnet

6: for k = 1 . . . K
7: Call the conflicting direction elimination process to

make Dk a cover set.
8: if Dk �= ∅
9: Call the direction selection process to select a

cover set D∗
k ⊆ Dk and get its work time t∗k

10: lnet = lnet + t∗k
11: for each di,j ∈ D∗

k

12: Li = Li − t∗k
13: until lnet − l

′
net < ε

14: return lnet

B. Conflicting Direction Elimination Process

The conflicting direction elimination process exists only in
directional sensor networks, since each sensor has exactly one
direction in omni-directional sensor networks. At first, we have
the set Dk of the work directions and the work time ti,j,k for
any di,j ∈ Dk. Eliminating the conflicting directions in Dk

to get a cover set is an instance of the DCS, which is NP-
complete. Therefore, we provide a heuristic to eliminate the
conflicting directions in Dk in this subsection. Initially, we set
D

′
k = Dk, A

′
= A, Dk = ∅. We repeat the following steps to

select non-conflicting directions from D
′
k into Dk.

In case that there exist non-conflicting directions in D
′
k,

which do not conflict with any other direction in D
′
k, we find

the direction di∗,j∗ with the maximal work time among all of
the non-conflicting directions in D

′
k. We denote U as the set

of the targets in A
′

that are covered by di∗,j∗ . Remove the
targets in U from A

′
. After the targets in U are removed from

A
′
, there are some directions in D

′
k that covers no targets in

the current A
′
, including the direction di∗,j∗ . We denote the

set of these directions as V . Remove the directions in V from
D

′
k. If a direction di,j in V conflicts with the directions neither

in Dk nor in D
′
k, we add di,j to Dk. Remove di,j from V

and repeat to select a new direction from V into Dk until the
remaining directions in V conflict with the directions either in
Dk or D

′
k. We repeat to select non-conflicting directions from

D
′
k into Dk until no non-conflicting direction exists in D

′
k.

In case that no non-conflicting direction exists in D
′
k and

D
′
k �= ∅, we find the direction di∗,j∗ with the maximum work

time in D
′
k. Remove the directions that conflict with di∗,j∗

from D
′
k.

Repeat the above steps until D
′
k is empty. If A

′
is empty,

this process succeeds and we add the work time of the removed
directions to the work time of the ones in Dk. Otherwise, this
process fails and let Dk = ∅. Finally, return Dk and the work
time ti,j,k for any di,j ∈ Dk.

The conflicting direction elimination process is shown be-
low:
Conflicting-Direction-Elimination (Dk, {ti,j,k| ∀di,j ∈Dk})

1: D
′
k = Dk, A

′
= A, Dk = ∅

2: while D
′
k �= ∅

3: while there exist non-conflicting directions in D
′
k

4: Find di∗,j∗ with the maximal work time among the
non-conflicting directions in D

′
k
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5: U = {am| am ∈ di∗,j∗ ,∀am ∈ A
′}, A

′
= A

′ − U
6: V = D

′
k −{di,j | am ∈ di,j ,∃am ∈ A

′
,∀di,j ∈ D

′
k},

D
′
k = D

′
k − V

7: for each di,j ∈ V
8: if di,j conflicts with the directions neither in Dk

nor D
′
k

9: Dk = Dk ∪ {di,j}, V = V − {di,j}
10: if D

′
k �= ∅

11: Find di∗,j∗ with the maximum work time in D
′
k

12: D
′
k = D

′
k − {di∗,j | j �= j∗,∀di∗,j ∈ D

′
k}

13: if A
′

is empty
14: for each di,j ∈ Dk

15: ti,j,k = ti,j,k +
∑

d
i,j

′∈D−Dk
ti,j′ ,k

16: else
17: Dk = ∅
18: return Dk and {ti,j,k| ∀di,j ∈ Dk}

We give the following two examples to see how the conflict-
ing direction elimination process works. Example 1 shows the
case that a non-conflicting direction exists while Example 2
shows the case that no non-conflicting direction exists.

Example 1. Fig. 2(a) illustrates a directional sensor network
with A = {a1, . . . , a4}, S = {s1, . . . , s5} and D = {d1,1,
d1,2, d1,3, . . . , d5,1, d5,2, d5,3}. Assume Dk = {d1,3, d2,1,
d2,3, d3,1, d3,3, d4,1, d4,3, d5,1} and the work time of the
corresponding directions in Dk is {0.8, 0.2, 0.8, 0.2, 0.8, 0.2,
0.8, 0.2}, i.e., t1,3,k = 0.8, t2,1,k = 0.2, t2,3,k = 0.8 and so on.
The elimination process goes as follows: Get D

′
k = Dk, A

′
=

A,Dk = ∅. At first, there are two non-conflicting directions
d1,3 with longer work time 0.8 and d5,1 with work time 0.2, so
d1,3 is selected. Get U = {a1} and then remove a1 from A

′
.

Get V = {d1,3, d2,1}, where d1,3 is a non-conflicting direction
and d2,1 conflicts with d2,3. Add d1,3 to Dk and remove both
d1,3 and d2,1 from D

′
k. Finally, we get Dk = {d1,3, d2,3,

d3,3, d4,3} with {0.8, 1.0, 1.0, 1.0}, the work time of the
corresponding directions in Dk.

Example 2. Fig. 2(b) illustrates a directional sensor network
with A = {a1, . . . , a6}, S = {s1, . . . , s6} and D = {d1,1,
d1,2, d1,3, . . . , d6,1, d6,2, d6,3}. Assume Dk = {d1,1, d1,3,
d2,1, d2,3, d3,1, d3,3, d4,1, d4,3, d5,1, d5,3, d6,1, d6,3} and the
work time of each direction in Dk is {0.2, 0.8, 0.2, 0.8, 0.2,
0.8, 0.2, 0.8, 0.2, 0.8, 0.2, 0.8}, i.e., t1,1,k = 0.2, t1,3,k =
0.8, t2,1,k = 0.2 and so on. The elimination process goes as
follows: Get D

′
k = Dk, A

′
= A,Dk = ∅. At first, there is

no non-conflicting direction in D
′
k, and we select d1,3 with

its work time 0.8. In D
′
k, d1,1 conflicts with d1,3, so d1,1

is removed from D
′
k. The direction d1,3 is a non-conflicting

direction in D
′
k after d1,1 is removed. Then we can select

d1,3 and other directions into Dk just like the way in the
Example 1. Finally, we get Dk = {d1,3, d2,3, d3,3, d4,3, d5,3,
d6,3} with {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}, the work time of the
corresponding directions in Dk.

C. Direction Selection Process

At first, we have the cover set Dk and the work time ti,j,k
for any direction di,j in Dk. For a target am, the maximal
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Fig. 2. Examples of conflicting direction elimination

time for which it can be covered by the directions in Dk is
tam

= maxam∈di,j

di,j∈Dk

ti,j,k. The maximal time for which all the

targets in A can be covered by the directions in Dk is t∗k =
minam∈Atam

. Hence, t∗k = minam∈Amaxam∈di,j

di,j∈Dk

ti,j,k.

A cover set D∗
k ⊆ Dk is selected to save energy. A

straightforward way is to select the direction di,j ∈ Dk that
satisfies ti,j,k > t∗k and has the longest work time, to cover
some uncovered targets each time. Repeat selecting another
direction from Dk to D∗

k until all the targets are covered by
the selected directions. Then, remove redundant directions in
D∗

k because the targets covered by some directions formerly
selected into D∗

k may be totally covered by the ones selected
into D∗

k later, which causes redundancy. Finally, return the
cover set D∗

k ⊆ Dk and its work time t∗k.

The direction selection process is shown below:
Direction-Selection (Dk, tk, {ti,j,k| ∀di,j ∈ Dk})

1: t∗k = minam∈Amaxam∈di,j

di,j∈Dk

ti,j,k

2: D∗
k = ∅, A

′
= A

3: D
′
k = {di,j | ti,j,k ≥ t∗k,∀di,j ∈ Dk}

4: Sort the directions in D
′
k according to the corresponding

work time in non-increasing order
5: for A

′ �= ∅
6: Remove the direction di,j from the head of D

′
k

7: if ∃am ∈ A
′
, am ∈ di,j

8: D∗
k = D∗

k ∪ {di,j}
9: A

′
= A

′ − {am| am ∈ di,j ,∀am ∈ A
′}

10: Remove redundant directions in D∗
k

11: return D∗
k and t∗k
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D. Prog-Resd Algorithm

Note that in the direction selection process in Section V-
C, when selecting a cover set D∗

k ⊆ Dk to save energy, the
direction with the longest work time is selected each time.
We propose an algorithm named Prog-Resd that takes into
consideration the residual lifetime of sensors. This algorithm
differentiates from the Progressive algorithm only in the
direction selection process. In this process of the Prog-Resd
algorithm, we get the maximal time t∗k for which all the targets
in A are covered by the directions in Dk. When selecting a
cover set D∗

k ⊆ Dk, we select the direction di,j ∈ Dk that
satisfies ti,j,k > t∗k and has the longest residual lifetime Li

to cover some uncovered targets each time. The remainder of
this process is the same as the direction selection process in
Section V-C.

VI. FEEDBACK ALGORITHM

As we stated before, we aim to extend the network lifetime
by activating a group of cover sets one after another in this
paper. The number of the cover sets plays an important role
when scheduling the cover sets in practice. Too many cover
sets may be inefficient or impractical. Frequently switching
sensors from one direction to another may not be easy for
physical reasons. Furthermore, even if the state transition
period, which is the time interval when one cover set is being
put into sleep as well as another cover set being activated,
is relatively short, too many cover sets mean too many state
transition periods that lead to the occurrence of the following
consequence with high probability: Some targets may not
be covered during the state transition period. Therefore, an
efficient algorithm should generate fewer cover sets with
longer work time.

In this section, we propose an algorithm named Feedback
that utilizes the results obtained from the previous iterations
and finds a group of cover sets in the last iteration. This
algorithm is more useful and practical because it generates
no more than K cover sets totally. Although the cover sets
generated in each iteration of the Progressive and the Prog-
Resd algorithms are no more than K, the number of the total
cover sets after all the iterations may be much larger than K.

In the Feedback algorithm, the LP problem formulated
in Section IV, the conflicting direction elimination process
proposed in Section V-B and the direction selection process
proposed in Section V-C are also used. In each iteration of the
Feedback algorithm, we only determine one cover set from
the solution to the LP problem, and add the constraints that
indicate this cover set to the LP problem in the next iteration.
Then we solve the updated LP problem again to get the next
cover set. The uth iteration in the Feedback algorithm consists
of the following steps.

At the first step, we solve the LP problem and get the
optimal solution tk and ti,j,k, for i = 1 . . . N , j = 1 . . . W
and k = 1 . . . K. The set of work directions is denoted as
Dk = {di,j | ti,j,k > 0,∀di,j ∈ D}, k = 1 . . . K. The former
u − 1 sets, D1, D2, . . . , Du−1, are cover sets, and the later
K − u + 1 sets may not be cover sets. We set the collection

of the later K − u + 1 sets as Unc = {Dk| k = u . . . K}
and the set of work time of the former u − 1 cover sets as
Vc = {tk| k = 1 . . . u − 1}.

At the second step, the set Dv in Unc with the longest
work time is selected. The conflicting directions in Dv are
eliminated by the conflicting direction elimination process in
Section V-B. If Dv �= ∅, the elimination process succeeds and
Dv is a cover set. Otherwise, another set in Unc is tried. After
the cover set Dv is found, a subset D∗

v of Dv is selected
to save energy and its work time t∗v is determined, using the
direction selection process in Section V-C.

At the third step, if the cover set D∗
v with its work time t∗v is

successfully found at the second step, constraints are added to
the LP problem to make the uth set a cover set. A constraint
ti,j,u = 0 for each di,j /∈ D∗

v and a constraint ti,j,u = δ for
each di,j ∈ D∗

v are added to the LP problem. The parameter
δ is a quite small positive number.

The iteration consisting of the three steps above is repeated
until all the K cover sets are found or no cover set can be
found in the current iteration. Finally, the network lifetime
is determined. In the case that K cover sets are found, we
compute once again the LP problem to which we have added
more constraints in the Kth iteration and get the work time
tk for each cover set. The network lifetime lnet =

∑K
k=1 tk.

In the case that less than K cover sets are found, the network
lifetime lnet =

∑
tk∈Vc

tk, where Vc is the set of the work
time of all the cover sets in the last iteration.

The Feedback algorithm is shown below:
Feedback Algorithm

1: u = 1, Unc = ∅, Vc = ∅
2: while u ≤ K
3: Solve the LP problem and get each tk and ti,j,k
4: Dk = {di,j | ti,j,k > 0,∀di,j ∈ D}, Unc = {Dk| k =

u . . . K}, Vc = {tk| k = 1 . . . u − 1}
5: Found = FALSE

6: while Found == FALSE

7: Select a Dv such that tv = maxDk∈Unc
tk

8: Unc = Unc − Dv

9: Call the conflicting direction elimination process to
make Dv a cover set

10: if Dv �= ∅
11: Found = TRUE

12: Call the direction selection process to select a
cover set D∗

v ∈ Dv and get its work time t∗v
13: if Found == TRUE

14: for each di,j ∈ D − D∗
v

15: Add ti,j,u = 0 to the LP problem
16: for each di,j ∈ D∗

v

17: Add ti,j,u = δ to the LP problem
18: u = u + 1
19: else
20: break
21: if u > K
22: Solve the LP problem and get each tk
23: lnet =

∑K
k=1 tk
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24: else
25: lnet =

∑
tk∈Vc

tk
26: return lnet

Here, we analyze the time complexity of the three algo-
rithms. Consider a directional sensor network with M targets
and N sensors, each of which has W directions. K is the
maximal number of cover sets in each iteration. In each
iteration of the three algorithms, Progressive, Prog-Resd and
Feedback, the LP problem is solved once. The time complexity
of the LP problem is O(n3) using Ye’s algorithm [17], where
n is the number of variables and n = K + KNW . The
time complexity to get K cover sets in each iteration is
O(KN3WM). As KN3WM  K3N3W 3 in practice, the
time complexity of each iteration is O(K3N3W 3), which is
mainly determined by the time complexity of the LP problem.
The number of iterations in the Feedback algorithm is at
most K, while the LP problem is solved for at most K + 1
times. Therefore, the total time complexity of the Feedback
algorithm is O(K4N3W 3). In the Progressive and Prog-Resd
algorithms, it is complicated to determine the number of
iterations because it depends on the many parameters, such
as K and ε.

VII. SIMULATION RESULTS

We evaluate the performance of the three algorithms Pro-
gressive, Prog-Resd and Feedback through simulations run-
ning on a computer with 3 GHz CPU and 1 GB memory.
The optimization toolbox in Matlab is used to solve the LP
problem. N sensors with sensing radius r and M targets are
deployed uniformly in a region of 400m×400m. Each sensor
has W directions. The maximal number of cover sets in one
iteration is equal to the number of sensors, i.e., K = N . For
the Progressive algorithm and the Prog-Resd algorithm, we set
ε = 0.001. For the Feedback algorithm, we set δ = 0.0001.
Each algorithm runs 10 times through random placement of
sensors and targets.

1) Network Lifetime: In this subsection, the initial lifetime
of each sensor is set as 1 and W is set as 3.

Fig. 3 shows the relationship between the network lifetime
and the number of sensors when 10 targets are deployed
and r is fixed at 100. The network lifetime increases almost
linearly when the number of sensors increases. The Prog-
Resd algorithm works a little better than the Progressive
algorithm in this figure. The Feedback algorithm has the best
performance compared to the other two algorithms. When the
number of sensors is 80, the average network lifetime of the
Feedback algorithm is 8.493, while they are 7.018 and 6.313
for the Prog-Resd algorithm and the Progressive algorithm
respectively. The relationship between the network lifetime
and the sensing radius is shown in Fig. 4 when 50 sensors and
10 targets are deployed. The network lifetime also increases
almost linearly when the sensing radius increases.

We fix N = 50 and r = 100. Fig. 5 shows that the network
lifetime drops as the number of targets increases. We can see
that the network lifetime drops quickly when M varies from

Fig. 3. Network lifetime vs. number of sensors N with M = 10, r = 100
and W = 3

Fig. 4. Network lifetime vs. sensing radius r with M = 10, N = 50 and
W = 3

Fig. 5. Network lifetime vs. number of targets M with N = 50, r = 100
and W = 3

1 to 2, and then drops relatively slowly when M varies from
5 up to 20.

2) Number of Directions per Sensor: An omni-directional
sensor network is a special case of directional sensor networks
when W = 1. For simplicity, we assume the lifetime of a
sensor with W directions is W here. Fig. 6 shows the growth
of the network lifetime with the increase of W when 50
sensors and 10 targets are deployed. We can see from the
figure that the network lifetime is almost linear to W .

3) Runtime: Fig. 7 shows the runtime for the three algo-
rithms with 10 targets, r = 100 and W = 3. As the number of
sensors increases, the runtime increases. The runtime of the
Prog-Resd algorithm is slightly longer than the Progressive
algorithm. The runtime of the Feedback algorithm is longer
than the other two algorithms. We observe one fact that the
Feedback algorithm runs mostly K iterations, while the Prog-
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Fig. 6. Network lifetime vs. number of directions per sensor W with M =
10, N = 50 and r = 100

Fig. 7. Runtime vs. number of sensors N with M = 10, r = 100 and
W = 3

Fig. 8. Number of total cover sets vs. number of sensors N with M = 10,
r = 100 and W = 3

Resd and the Progressive algorithms run much less than K
iterations in most cases.

4) Number of Total Cover Sets: Fig. 8 shows the number
of the total cover sets of each algorithm with 10 targets, r =
100 and W = 3. We can see from this figure that both the
Progressive algorithm and the Prog-Resd algorithm generate
much more cover sets than the Feedback algorithm. As we
analyzed before, fewer cover sets with longer work time are
more efficient and practical.

VIII. CONCLUSIONS AND FUTURE WORK

Scheduling algorithms to save energy and prolong the
network lifetime are always important for sensor networks.
However, algorithms designed for omni-directional sensor net-
works may not be suitable for directional sensor networks. In
this paper, we have studied the problem of multiple directional

cover sets and proved that this problem is NP-complete. We
have presented the Progressive algorithm based on LP, and
then enhanced this algorithm to gain a longer network lifetime.
Also, the Feedback algorithm using the previous results as
a feedback has been described. Simulation results show that
the Feedback algorithm gets a longer network lifetime and
fewer cover sets that are more efficient in practice. As a future
work, we plan to design distributed algorithms to prolong the
network lifetime of a directional sensor network.
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